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As an aid to the control of structure-borne sound the characterization of a
machine as a structure-borne sound source would constitute a useful design tool.
Towards this goal, a formulation based upon a machine’s ability to deliver power
has been proposed by Mondot and Petersson [1]. To progress their proposal, this
paper examines in an ordered manner those physical parameters which determine
the vibrational power in a system involving multiple connections. The structural
characteristics of typical machine and floor mount conditions are considered by
examination of mobility relationships whilst the machine excitation (or source
activity) characteristics are considered via free velocity relationships.
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1. INTRODUCTION

When a machine (the source) is connected to a supporting structure (the receiver)
the structural coupling is such that in general the resultant dynamic behaviour of
the combined system is dependant upon both the source and receiver structural
characteristics and the excitation of the source (its activity). That the system
behaviour is dependent upon both bodies means henceforth that it is difficult to
relate the behaviour of the combined system to source-only parameters. Clearly
the characterization of a machine as a vibrational source is therefore inherently
problematic.

In an attempt to circumvent the problem, Mondot and Petersson [1] proposed
that source characterization be considered with respect to the ability of a machine
to deliver vibrational power. For each connection point and degree of freedom two
functions are introduced; the source descriptor,

Sn
i =(Vn

sfi )
2/2Ynna*

sii , (1)

and the coupling function,

Cfn
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sii Ynna*
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where Vn
sfi is free velocity, Ynna

sii , Ynna
rii are effective point mobilities [2] of the source

and receiver respectively and n denotes position and i component direction.
Physically the source descriptor can be considered as describing the ability of

the source to produce power and the coupling function thought of as a filter
determining how much of this latent power is manifested is the combined system.
The manifested power is obtained via their product and the total power in the
combined system is obtained by summation of such over all connection points and
components of direction.

Whilst the approach has clear promise [3] a key difficulty inherent is that it relies
upon formulation of the effective point mobilities;
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where Ynm
ij is mobility and Fm

i force.
As well as the force distribution amongst the contact points, formulation of all

the effective point mobilities does therefore require knowledge of all the source and
receiver mobilities of the system. Even with reciprocity invoked, the amount of
data is demanding; i.e., for a four contact system with six degrees of freedom 300
separate mobility spectra, for both source and receiver, are required. Moreover,
whilst it is clear that such an amount of data can seldom be procured reliably, the
problem is compounded upon understanding that the force distribution in the
system is, together with all the source and all the receiver mobilities, also
dependant upon the free velocities of the source. To calculate the source descriptor
prior to assemblage of the system, all such parameters therefore either need to be
measured, predicted or estimated in some manner.

Henceforth, and as discussed in an earlier paper by Fulford and Gibbs [2], it
is suggested that, in regard to the source descriptor and coupling function
formulation there is much to be gained by considering it with a view to
understanding, and possibly generalizing their forms, the mobilities of machines
and supporting structures together with the machine free velocities. Also, if
relationships amongst the terms can be found the amount of data needed to be
procured before formulation of the effective point mobilities, and following the
source descriptors and coupling functions, can be reduced. For example, upon
assuming only translational motion, equation (3) can be rewritten as

Ynna = s
N

m=1,m$ n

Ynn0Ymn

Ynn1 Fm

Fn , (4)

to reveal that if Ymn/Ynn (the ratio of transfer to point mobility) can be assumed
then knowledge of the individual transfer mobilities is not required.

Hence with the purpose of understanding and appreciating their forms, this
paper investigates mobilities and free velocities for typical mount conditions.
Whilst it is recognized that all components of motion at each contact should be
studied, the work is limited to the important case of vertical translational motion
and to four contact points. Further, from understanding that even small structural
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changes can influence a mobility [4]; an engineering approach is adopted in that
the work is directed towards a generic form of result.

2. MACHINE MOBILITIES

For a large range of machines, the mount footing is typically a plate [5]. With
this assumption the dynamics of a mount can be modelled as a plate attached via
a spring to a mass (see Figure 1) where the mass represents the machine body and
the spring the local stiffness of the footing as determined by the boundary
conditions, material and dimensions of the plate. By using this model, the point
mobility, prior to the onset of wave behaviour within the plate, can be expressed
as

Y=(k−v2M)/ivMk, (5)

where M is the mass of the machine and k the local stiffness of the mount footing.
For low frequencies the mass term will dominate the expression so that the

mobility will exhibit a mass controlled region (magnitude decrease of 6 dB per
octave with a phase of −p/2) whilst for high frequencies the stiffness term will
dominate to give a stiffness controlled region (magnitude decrease of 6 dB per
octave with a phase of p/2). Where the mass and stiffness behaviour counteract
each other, and therefore separating these two regions, will be an anti-resonance
frequency

vo =zK/m. (6)

For frequencies beyond the stiffness controlled region, the plate will begin to bend
and at its fundamental frequency there will be an onset of resonant behaviour
whereupon in regard to the mobility the specifics of the plate (and then the
machine body) become important and any analysis would require a detailed
model.

With respect to the forms of the mobilities, it is useful therefore to understand
that the point mobility of a typical machine mount will exhibit in general all of
mass, stiffness and resonant controlled regions, and that the mass and stiffness
regions are separated by a anti-resonance determined by the mass and local
stiffness, whilst the onset of the resonant region is determined by the properties
of the mount plate. Upon assuming therefore a generalized form of the point

Figure 1. Model of a machine mount point.
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Figure 2. Generalized point mobility of machine mount.

mobility as shown in Figure 2, it is orderly to consider the relationships between
the point and transfer mobilities in each region separately.

2.1.   

In the mass controlled region the machine can be modelled as a rigid body and,
upon assuming that the co-ordinate axes coincide with the principal inertia axes
of the body, the mobility can be given by

Y=(1/iv)(1/m+ yoy/Ixx + xox/Iyy ), (7)

where xo and yo describe the position of the force with respect to the centre of
gravity, x and y are the co-ordinates of the response point and, Ixx and Iyy are the
moments of inertia.

The expression reveals that in the mass controlled region, the point and transfer
mobilities are dependent upon the position of the points involved and upon the
machine’s moments of inertia. Relationships for the point and transfer mobilities
can therefore only be procured if values for such are introduced. Towards this,
it is suggested that two basic types of machines can be considered; one in which
both the yoy/Ixx and xox/Iyy terms of equation (7) are small compared to the 1/m
term, i.e., the machine is ‘‘tall’’, and one in which all of the terms are comparable,
i.e., the machine is ‘‘squat’’.

For the former, the simple relationship deduced is that the transfer mobility,
Ytr, will approximate to the point mobility, Ypt: i.e., Ytr/Ypt is approximately unity.
To deduce relationships for the latter type it is suggested that for practical reasons
of stability many machines are designed such that the centre of gravity is near the
geometrical centre and that the mount points are positioned symmetrically around
this point. With reference to Figure 3, the following then applies for the magnitude
of the point mobilities,

Y11 1Y22 1Y33 1Y44, (8a)

and for the transfer mobilities,

Y12 1Y34, Y13 1Y24, Y14 1Y23. (8b–d)
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Figure 3. Machine with a plate-like base.

By definition, the phase of the point mobilities is always −p/2 in the mass
controlled region whilst the phase of the transfer mobilities depends upon Ixx and
Iyy and the positions of the mount points. Upon assuming again that the positions
are symmetric about the centre of gravity, two conditions are likely, one where
Iyy is greater than Ixx and one where Ixx is greater than Iyy (the case where Ixx and
Iyy are equal and small is theoretically possible but unlikely in practice). For the
first case,

u{Y12}= u{Y11}=−p/2, u{Y13}= u{Y14}= p/2, (9a, b)

and for the second case,

u{Y14}= u{Y11}=−p/2, u{Y12}= u{Y13}= p/2. (10a, b)

Unless the details of the machine are known, the above it is suggested, represents
all which can be deduced as regards the mobility relationships of a machine in a
mass controlled region.

2.2.   

In the stiffness controlled region, the mobility is primarily controlled by the
structural characteristics of the mount plate, i.e., size, material and boundary
conditions, and the main body of the machine can be ignored in the analysis. Upon
assuming thin-plate theory [6] the forced transverse motion of the mount point is
governed by

D[14W/1x4 +2 14W/12x 12y+ 14W/1y4]+ rh 12W/1t2 =F(x, y)f(t), (11)

where x, y, z are the mutually perpendicular co-ordinates, t is the time function,
W is transverse displacement, r is density, h the plate thickness and F the applied
force. D is the flexural rigidity of the plate and is given by

D=Eh3/12(1− n2), (12)

where n is the Poisson’s ratio of the material and E the Young’s modulus. Unless
at least one pair of opposite edges are simply supported, solution is possible only
by approximate methods. Of these, the Rayleigh–Ritz approach [7] is most
versatile as regards boundary conditions and was adopted for the study.

The analysis makes a distinction between the mount condition being either
plate- or flange-like. With a plate-like base (see Figure 3) all mount points are upon
a single homogeneous plate whilst for a flange-like base (see Figure 4) not only
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Figure 4. Machine with a flange-like base.

can discontinuities exist between mount points but moreover its characteristic is
that one dimension is much greater than the other and at least one long side has
a free-edge condition. The mobilities are considered for each base type in turn.

2.2.1. Plate-like base

If the machine has a box-like construction where the thickness of the base is
greater than that of the supporting walls, the plate can be characterized as being
simply supported along all four edges: i.e., a SSSS plate. For such, if two points
are both far from an edge the difference between point and transfer mobilities in
the stiffness controlled region will be small (see Figure 5, where a
1 m×1 m×5 mm steel plate has been assumed) and Ytr/Ypt will tend to unity. If
one point is close to an edge however the constraint imposed upon the deflection
is such that significant differences between the two mobilities can occur (see
Figure 6). Since the deflection is not uniform over the plate area, differences can
also occur if the two points are a significant distance apart. Although the positions
of, and distance between, the mount points cannot be assumed, for practical
purposes the mounts can (likewise for the mass controlled region) be assumed
symmetrically positioned around the geometric centre. Doing so allows the
transfer mobilities in the stiffness region to be paired as in equation (8).

Where the supporting edge thickness is equal to, or greater than, that of the
base-plate the boundary conditions are approximated by a clamped condition.
Although for such it is known that the stiffness differs greatly at positions close
to the edge cf. at the centre, Ytr/Ypt can be assumed unity providing both points

Figure 5. Typical point and transfer mobilities for non-edge positions on a SSSS plate. ––, Ypt;
. . . . , Ytr.
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Figure 6. Typical point and transfer mobilities of a SSSS plate where one point is close to an edge.
Key as Figure 5.

are away from an edge. A paired condition, equation (8), can then again be
imposed if a symmetrical configuration is assumed.

In the region, the phase of the point mobilities will, by definition, be p/2. Also,
since there is no global movement of the body in the phase of the transfer
mobilities will likewise be p/2.

2.2.2. Flange-like base

One example of a flange-like base is the cantilever with three free edges (see
Figure 7). Upon assuming a clamped fixed edge and an aspect ratio of 10, point

Figure 7. Machine with cantilever flanges.

Figure 8. Typical point and transfer mobilities for a CFFF flange. Key as Figure 5.
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Figure 9. Local plate deformation.

and transfer mobilities are as shown in Figure 8 for typical mount positions on
a 5 mm thick steel flange. It is seen that in the stiffness controlled region (in this
case, up to 400 Hz), the transfer mobility is less than that of the point mobility
but converges rapidly to it at the fundamental frequency. Such behaviour occurs
because in the stiffness region the plate is twisting with localized deformation (see
Figure 9) whilst at resonance the deformation is global and the whole plate is
excited. Though the details of this behaviour are dependent upon all of the
material, aspect ratio and thickness of the flange, the analysis can be rationalized
to an extent by assuming the ratio of the transfer to point mobility in the stiffness
controlled region has a frequency invariant form: i.e.,

Ytr/Ypt =Ykpt/Yktr, (13)

where Ykpt represents the point mobility stiffness and Yktr the transfer mobility
stiffness. Then, for typical materials and flange thickness Ytr/Ypt can be expressed
as a function of aspect ratio. Hence, upon assuming the flange material to be steel
and its thickness to be 5 mm, Figure 10 is produced. Two regions either side of
a minimum at b/a=7 are seen, the first where Yktr/Ykpt decreases as b/a is
increased and the second where it increases.

It is proposed that the transfer stiffness has two components Yktr
defl and Yktr

bend. Due
to the twisting action of the plate the two mount points will have different
deflections relative to the clamped edge, and therefore an associated difference in
stiffness, this being accounted for by the component Yktr

defl. Differences in stiffness

Figure 10. Typical Yktr/Ykpt for a CFFF flange.
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Figure 11. Typical Yktr/Ykpt for a CFCF flange.

also occur due to the curvature of the plate along the line between the two points
and this is accounted for by Yktr

bend.
Since Yktr

bend is associated with a bending mode, it is dominant where Yktr/Ykpt is
curved i.e., b/aQ 7, whilst Yktr

deft is dominant for b/aQ 7. The aspect ratio at which
the two regions converge (7) can be expected to alter for flanges of differing
thickness and material. As such its value is of limited significance.

If the position of the excitation point is moved towards the clamped edge, the
twisting action of the plate will reduce and the transfer mobility compared to the
point mobility can be expected to decrease. Conversely if the excitation point is
moved towards the free edge, the twisting action will be greater and the transfer
mobility compared to the point mobility can be expected to increase.

Whilst Yktr/Ykpt is dependent upon all of aspect ratio, material, plate-thickness
and the position of the mount points it is suggested that typically Ytr along a
clamped cantilevered plate can, for a stiffness controlled region, be considered to
be an order of magnitude or more, less than Ypt. Other flange-like bases include
the cases where two opposite sides are fixed or where three sides are fixed. Since
the boundary conditions of a real fixed edge are known to be between the simply
supported and clamped conditions [8] both are considered. For typical excitation
and reception points, Yktr/Ykpt is shown in Figure 11 for a CFCF 5 mm steel plate
and in Figure 12 for a SFSF 5 mm steel plate. Again two regions are seen and

Figure 12. Typical Yktr/Ykpt for a SFSF flange.
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Figure 13. Typical Yktr/Ykpt for a CCFC flange.

again the magnitude of the transfer mobility tends to be at least a decade below
that of the point mobility.

Where the plate is CCFC, Yktr/Ykpt is shown in Figure 13 and where it is SSFS
in Figure 14. For the latter, the ratio is invariant with respect to b/a for b/aq 6
but the magnitude of the transfer mobility is again approximately a fifth of the
point mobility. For the CCFC plate however Yktr is a decade less that Ykpt for
b/aq 8. Further, for 2Q b/aQ 6, Yktr is greater than Ykpt. Whilst the CCFC case
does not permit general conclusions, the ratio Yktr/Ykpt for a plate fixed on three
sides can again clearly be small; i.e., 10−1.

Henceforth, it is suggested that for any flange the general trend is for the transfer
mobility to be approximately a decade below that of the point mobility. If it is
also assumed that the flanges are attached to the machine through strong
discontinuities, the relationship amongst the mobilities in the stiffness controlled
region needs to take into account only the number of flanges involved and their
configuration, i.e., for two points across a strong discontinuity

Ytr =0, (14)

whilst for two points along a flange

Y12 1Y11/10. (15)

Figure 14. Typical Yktr/Ykpt for a SSFS flange.
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Figure 15. For steel and h=0·001, area of plate necessary for Skudrzyk’s high frequency limit.

2.3.   

In the resonance region, the transfer and point mobility are dependent upon the
modal interaction of the machine base; be it flange- or plate-like. Since the mode
shapes and mode frequencies are dependent upon the material, dimensions and
boundary conditions and the modal interaction is dependent upon the frequency,
excitation position, reception position and material damping, the establishment in
the resonance region of Ytr/Ypt relationships is difficult. This was highlighted in a
seminal paper by Skudrzyk [9].

In his paper Skudrzyk subdivided the resonance region into four frequency
ranges: (i) low frequencies; (ii) transition frequencies; (iii) high frequencies and (iv)
very high frequencies with the ranges determined by the ratio of average modal
spacing to the half-power bandwidth of a mode,

a= ev /hvv , (16)

where ev represents the average modal spacing (rad/s), h the material loss factor
and vv the frequency of interest.

For regions (iii) and (iv) a is defined as approximate to or less than unity
respectively. As regards the mobilities of machines, it can however be argued that
these frequencies are not of concern. To illustrate, the modal spacing for a thin
mount plate transversely excited is deduced from reference [13] to be

ev =3·6cLh/A, (17)

where A is the plate area and cL is the quasi-longitudinal wave propagation speed.
Then, equations (16) and (17) combined give

a=3·6cLh/hAvv , (18)

whereupon, for the assumed material properties of steel, a loss factor of 0·001 and
an upper frequency limit of 10 kHz, the plate area required for a to equal unity
is shown in Figure 15 as a function of plate thickness. Henceforth, for plate
thicknesses of 3 mm or less, it is seen that a plate area of 1 m2 or less can
accommodate a equal to unity whilst for thicker plate thicknesses the area
necessary is larger than 1 m2. It is suggested that ‘‘typically’’ the mount plates of
building engineering machines are ‘‘thick’’ whereby for an a=1 condition to exist
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the plate area needed is 1 m2. Such an area is thought to be above that usually
encountered and in the following it is inferred that for machine mobilities the high
and very high frequency regions of Skudrzyk are not applicable.

For Skudryzk’s transition range, a is between unity and five. For a steel plate
of thickness of 3 mm and, once more, an upper frquency of 10 kHz, the range of
plate areas to which these limits correspond has a lower bound of about 0·2 m2.
This area is suggested to be of practical concern. Whilst therefore it would be
useful to obtain simple Ytr/Ypt relationships for this range, Skudrzyk has concluded
that no simple general theory to describe a mobility can be expected. The reasoning
is that the range describes the transition from ‘‘many’’ to ‘‘few’’ reflections
contributing to the wavefield and, as neither a statistical nor smoothed description
of the mobility functions is applicable, Ytr/Ypt has to be determined uniquely for
any given case.

Of most interest therefore is Skudrzyk’s work in the low frequency region where
aq 5, an engineering description for this range being where the mobility has well
separated peaks. Even for this region it should be acknowledged however that for
all but very simple structures it is not possible to predict exact mobility spectra.
Hence at most, only the mean of the mobility magnitude and the envelope which
bounds the upper and lower peaks can be predicted with any reliability. As such
only a statistical distribution involving the mean and range of Ytr/Ypt is considered.

As regards the mean of a point mobility, if the point is at the centre of a plate
this will be equal to the characteristic plate mobility. Where the point is within
a wavelength of a free edge an increase above this value of about 5 dB can be
expected whilst if within a wavelength of a corner the increase will be about 12 dB.
For points which are at least a wavelength away from a boundary the variation
will however be small and can be ignored. For the transfer mobility, the effect upon
the mean level of the distance between the two points can be ignored if the points
are less than a wavelength apart. Under such conditions Ytr/Ypt will therefore equal
unity. Although where the points are greater than a wavelength apart, the mean
of the transfer mobility magnitude can be expected to be lower than that of the
characteristic mobility, the details are dependent upon the distance involved.
Under such circumstances it is difficult to deduce a relationship for the mean of
Ytr/Ypt.

For a point mobility the envelope which bounds the peaks and troughs is equally
positioned above and below the mean value by the factor

bmax =2ev /phvv . (19)

Combining equations (17) and (19), one finds that the envelope defining the
maximum variation of the point mobility in the resonance region is, for positions
away from the edge, given by

Ypt=max =Ya +7·2cLh/pAhvv (20)

and the minimum by

Ypt=min =Ya −7·2cLh/pAhvv . (21)
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Since for a transfer mobility the response point can be positioned at a node, the
lower bound of the envelope, other than zero, cannot be defined. The maximum
of the envelope will however be likewise that for the point mobility. Thus whilst
the lower limit of the magnitude of Ytr/Ypt cannot be defined, the upper limit for
the magnitude of Ytr/Ypt can be given by

Ytr/Ypt=max = (YapAhvv +7·2cLh)/(YapAhvv −7·2cLh). (22)

As regards the phase in the resonance region, the wavefield is so complex that
such relationships between that of the point and transfer mobilities cannot be
determined.

2.4. 

To support the theoretical study a number of experimental mobility
measurements have been undertaken. The purpose of the measurements was to
validate that a point mobility will exhibit all of the mass, stiffness and resonance
regions and that for each region different relationships between the point and
transfer mobility can be expected and to a certain extent predicted. Because the
framework of the approach has as its reference the general form of the point
mobility, machine details, other than the mount-plate type, add little to the results.
For interest, therefore, as the basis for the measurements three medium sized fan
units from air conditioning systems were used.

The first fan unit had a base consisting of three flanges welded to the machine’s
main body; see Figure 16 for a schematic diagram. Theory suggests that for a
transfer mobility along a flange the magnitude will, in the stiffness controlled
region, be approximately a decade below that of the point mobility. In the mass
controlled region Ytr/Ypt can be expected to be constant whilst in the resonance
region the relationship will be variable. A typical point and transfer mobility
shown in Figure 17 confirms these expectations; the stiffness region extends over
the frequency range 80–800 Hz and the transfer mobility over much of this range,
i.e., 300 Hz to 800 kHz, is a decade or more below the point mobility.

The base of the second fan unit was formed from a single plate with the mount
points upon bent-in flanges (see Figure 18) so that the structure of the flange was
not as defined as for the first unit. It is suggested that the bent-in flange can be

Figure 16. For fan 1 flange is welded along two sides.
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Figure 17. Point and transfer mobility for fan 1. ––, Y11; . . . . , Y12.

thought of as a hybrid between a flange- and a plate-like base. Though the
frequency resolution is poor and accuracy limited it is suggested that for
frequencies below 70 Hz the point mobility is (see Figure 19) mass controlled.
Between 70 Hz and 100 Hz the slope of the point mobility is however steeper than
expected for a stiffness controlled region whereupon the region is probably

Figure 18. For fan 2 flange is formed from a bend in metal sheet.

Figure 19. Point and transfer mobility for fan 2. Key as Figure 17.
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Figure 20. The base of fan 3 is formed from a series of connected beams.

dominated by the fundamental resonance. That the transfer mobility magnitude
in the region is significantly less than that of the point mobility is, it is suggested,
indicative of uncoupling via the twisting action identified in Figure 9.

For the third fan, the base was constructed from a series of connected beams
(see Figure 20). The mount condition is therefore neither plate- or flange-like and
hence a long stiffness controlled region cannot be expected. Instead the mass
controlled region will be directly followed by a resonance region and, due the
beams acting as waveguides, the point and transfer mobilities can, for all
frequencies, be expected to have similar trends; see Figure 21.

3. FLOOR MOBILITIES

In order to formulate both the source descriptors and coupling functions of a
system the effective mobilities of both source and receiver have to be assembled.
As well as for machines, relationships between the mobilities of the recipient
structure do therefore also have to be considered.

So to be apt for building engineering applications, the recipient is designated
to be a floor within a building. Since a floor is not a free body, a mass controlled
region will not be seen in the point mobility. As regards the general form of the
receiver mobility, the lower frequency asymptote will therefore be a stiffness
controlled region. For frequencies above the floor’s fundamental resonance, i.e.,

Figure 21. Point and transfer mobility for fan 3. Key as Figure 17
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Figure 22. For concrete and h=0·01, area of plate needed for Skudrzyk’s high frequency limit
(a) and lower frequency limit (b). ––, h=50 mm; - - - , h=100 mm; . . . . , h=200 mm; — . — . —,
h=300 mm; — . . —, h=500 mm.

the resonance region, it is interesting to consider the frequency dependence of the
floor area and thickness required for a to equal unity (Skudrzyk’s high frequency
region) and for a to equal five (the low frequency limit). Hence, upon assuming
material properties of concrete and a loss factor of 0·01, the plate area required
for a=1 is shown in Figure 22(a), and for a=5 in Figure 22(b). From
Figure 22(a), it is suggested that the ranges of plate areas exhibited are comparable
to those found in typical building engineering installations. Indeed, even for the
extreme case shown of a 500 mm thick concrete floor and excitation frequency of
1 kHz, the area required for a=1 is only 72 m2. For the floor mobilities, it is
suggested too therefore that is it likely that Skudrzyk’s very high frequency limit
will also be reached: i.e., aQ 1. For this region, reflections from the boundaries
do not contribute to the plate response whereby the finite nature of the floor can
be ignored and an infinite structure assumed. As regards the general form of the
recipient mobility the upper asymptote is therefore an infinite region; see
Figure 23. This in agreement with measurements by Fahy [11].

Appreciating that a floor is plate-like means that the above work concerning a
machine mount with a plate-like base is also applicable to the floor. Hence for a
floor in a stiffness controlled region, it is known that if the points are close to each
other and are away from constraining edges, Ytr and Ypt will be approximately
equal. Where one point is close to an edge or both points are separated by large
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Figure 23. Generalized point mobility of floor mount.

distance then discrepancies between the mobilities will however occur. Likewise,
for the resonance region of the floor point mobility, application of the plate-like
work of the machine mount suggests that for frequencies above the fundamental
plate resonance, Ytr/Ypt relationships are difficult to establish and best considered
statistically.

For the infinite region of the floor mobility Ytr/Ypt can however be expected to
be a smooth function. In polar co-ordinates the ratio can be written as

Ytr/Ypt =H(2)
0 (kr)−H(2)

0 (−ikr) (23)

where H(2)
0 is a Hankel function of the second order with r the distance between

the two points.
By plotting the magnitude of Ytr/Ypt versus kr, see Figure 24, it is seen that for

kr greater than 2·5 the point mobility magnitude is at least twice that of the
transfer mobility. Since the decrease seen is due to divergence the phase of Ytr/Ypt

can similarly be expected to decrease with kr.
Where two points are greater than an eighth of a wavelength apart asymptotic

values of the Hankel function can be used such that

Y(0, r)=Ya(2/2kr)1/2 e−ik(r− g/8), (24)

Figure 24. Ytr/Ypt upon an infinite plate.
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Figure 25. Maximum distance for Ytr/Ypt 1 1 upon a concrete floor. Key as Figure 22.

whilst if r is small, power developments can be used to give the simple result that
providing the distance involved is less than an eighth of a wavelength the transfer
mobility will approximate to the point mobility; Ytr/Ypt =1. In Figure 25 the
frequency limit of this criteria is plotted for different thicknesses of concrete.

4. MACHINE FREE VELOCITIES

With respect to the source descriptor and coupling function formulation the
final components which need to be considered are the free velocities of the
machine. The free velocity of a machine mount point being that velocity
manifested when the machine is run under normal operating conditions but
without connection to any external structure. Likewise the mobilities, relationships
between the free velocities are considered.

The free velocity is a function of all of the machines internal mechanisms. To
be obtained via a theoretical model that model would therefore have to include
all of the machine components including both passive and active subsystems i.e.,
excitation and transmission elements. Clearly the difficulties involved with
obtaining data for all components and theoretically connecting all together are
intractable. More importantly however the excitation mechanisms of machines are
so varied that, unlike structural characteristics where for example a mount point
can be modelled as a plate attached to a mass, a general model cannot be
considered for free velocities. A theoretical analysis of free velocities is therefore
difficult to conceive. Hence, the study instead is concentrated upon measured data.
To be consistent with the analysis of the mobilities relationships between free
velocities are considered for each of the mass, stiffness and resonant regions.

4.1.   

In the mass controlled region the machine moves as a rigid body. Where there
is a single internal excitation source, or else all the internal excitations are
coherent, the phase difference between the free velocities will be discretized at
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either 2p or 0. For a rotational mode about the x-axis the relationships will
be

u{V1
sf}− u{V2

sf}=0, u{V1
sf}− u{V3

sf}=2p, u{V1
sf}− u{V4

sf}=2p,

(25a–c)

whilst for a translational mode all the free velocities will be in phase.
With respect to magnitude relationships, nothing can be reasoned unless

assumptions for the excitation mechanism, the structure of the machine and the
positions of the mount points are introduced. As for the mobility relationships it
is suggested therefore that for reasons of stability the mount points of the machine
are positioned symmetrically around the machines centre of gravity. Providing the
internal excitations have similar symmetrical properties, it can then be deduced
that all the free velocities in the mass controlled region will be of approximately
equal magnitude.

4.2.   

In the stiffness controlled region the machine no longer moves as a rigid body
and the magnitudes and phases of the free velocities depend upon the details of
the machine. With respect to magnitude and phase relationships nothing can
therefore be stated other than that under the symmetrical properties outlined
above it is possible that the magnitude of all the free velocities will exhibit similar
trends.

4.3.   

The wave behaviour in the resonance region dictates that again magnitude and
phase relationships cannot be determined. The possible exception is that for
approximately symmetrical conditions of both structure and excitation mechanism
the magnitudes of the free velocities will all exhibit a similar trend.

4.4. 

Free velocity measurements were taken of the three fan units considered in the
analysis of the mobilities. To approximate the free condition the units were
suspended by low resilience restraints [12].

Figure 26. Free velocity for fan 1.
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Figure 27. Ratio of two free velocities for fan 1.

For the first fan unit the magnitude of a typical free velocity is shown in
Figure 26. The spectrum has a decreasing trend with frequency indicating that the
majority of the activity is contained in the low frequencies. The magnitude ratio
of the free velocities at two points is shown in Figure 27. In the mass controlled
region, (below 80 Hz), the free velocities are within 10 dB suggesting approximate
symmetrical properties. For both the stiffness and resonant controlled regions the
free velocities also have similar trends. The variations have however increased to
about 220 dB.

The ratio of two typical free velocities of the second fan unit is shown in
Figure 28. A similarity trend is again observed but the variations are within a range
of about 30 dB. This is especially noticeable in the mass controlled region.

Results for the third fan are shown in Figure 29. The free velocities again follow
a similar trend where the range of variation is 10 dB.

5. CONCLUDING REMARKS

Work towards understanding the components involved in the source descriptor
and coupling function formulation has been undertaken. Hence for both machines

Figure 28. Ratio of two free velocities for fan 2.
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Figure 29. Ratio of two free velocities for fan 3.

and floors relationships between point and transfer mobilities have been
considered and free velocity relationships for machines also studied.

The point mobility of a typical machine mount can be generalized as operating
in either a mass, stiffness or resonance controlled region. For the floor the mass
controlled region can be disregarded but at high frequencies, an additional infinite
region also needs to be considered.

Where the source is mass controlled Ytr/Ypt depends upon the inertial properties
and position of mount points. If symmetry is assumed, the magnitude of Ytr/Ypt

will be either unity or paired in accordance with equation (8) whilst the phase will
be discretized at either 0 of 2p, (see equations (9) and (10)).

For the stiffness control region Ytr/Ypt for the machine depends upon whether
the mount is plate- of flange-like. For a plate-like footing Ytr/Ypt is again either
unity or, upon assuming symmetry, paired in accordance with equation (8). The
distinguishing factor is the relative position of the points to the plate edges. For
two mount points upon a flange-like footing the transfer mobility in the stiffness
region is a decade below the point mobility. Effectively the two points are therefore
uncoupled and the transfer terms in the mobility matrix can be ignored. Where
the floor is modelled as a plate relationships between the point and transfer
mobilities are as for the plate-like footing. The phase of both point and transfer
mobilities in a stiffness region is always p/2.

For the resonance controlled region relationships for Ytr/Ypt are difficult to
establish for both machine or floor unless considered as a statistical distribution.
In the infinite region, expected for a floor at high frequencies, Ytr/Ypt can however
(providing two points are greater than an eighth of a wavelength apart) be
determined by using equation (24).

For free velocity the complexity and variability of machine construction and
operation is such that the only deterministic relationship deduced is that, providing
the machines internal excitation mechanisms are all coherent, the phase in the mass
controlled region will be descretized at 0 or 2p. Based upon measurements of
three machines, it is also tentatively suggested that providing both the structure
and excitation mechanisms have approximate symmetrical spatial properties then
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the magnitudes of free velocities at different mount points will follow a similar
trend.

In summary, relationships between point and transfer mobilities and amongst
free velocities have been studied. By using these relationships, source
characterization for multi-point systems can now be undertaken without
restriction to specific machines and structures. Work by Fulford [13] with respect
to this is to be reported in a later paper.
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